ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.02690
84
71

Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot Sentiment Classification

5 December 2021
Zhenhailong Wang
Heng Ji
ArXivPDFHTML
Abstract

State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks. However, current approaches are limited to small closed vocabularies which are far from enough for natural communication. In addition, most of the high-performing approaches require data from invasive devices (e.g., ECoG). In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks. We hypothesis that the human brain functions as a special text encoder and propose a novel framework leveraging pre-trained language models (e.g., BART). Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines. Furthermore, we show that our proposed model can handle data from various subjects and sources, showing great potential for a high-performance open vocabulary brain-to-text system once sufficient data is available

View on arXiv
Comments on this paper