ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.01662
11
24

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting

3 December 2021
Pouneh Nikkhah Bahrami
Umar Iqbal
Zubair Shafiq
ArXivPDFHTML
Abstract

Browser fingerprinting is a stateless tracking technique that attempts to combine information exposed by multiple different web APIs to create a unique identifier for tracking users across the web. Over the last decade, trackers have abused several existing and newly proposed web APIs to further enhance the browser fingerprint. Existing approaches are limited to detecting a specific fingerprinting technique(s) at a particular point in time. Thus, they are unable to systematically detect novel fingerprinting techniques that abuse different web APIs. In this paper, we propose FP-Radar, a machine learning approach that leverages longitudinal measurements of web API usage on top-100K websites over the last decade, for early detection of new and evolving browser fingerprinting techniques. The results show that FP-Radar is able to early detect the abuse of newly introduced properties of already known (e.g., WebGL, Sensor) and as well as previously unknown (e.g., Gamepad, Clipboard) APIs for browser fingerprinting. To the best of our knowledge, FP-Radar is also the first to detect the abuse of the Visibility API for ephemeral fingerprinting in the wild.

View on arXiv
Comments on this paper