74
29
v1v2 (latest)

Revisiting Temporal Alignment for Video Restoration

Abstract

Long-range temporal alignment is critical yet challenging for video restoration tasks. Recently, some works attempt to divide the long-range alignment into several sub-alignments and handle them progressively. Although this operation is helpful in modeling distant correspondences, error accumulation is inevitable due to the propagation mechanism. In this work, we present a novel, generic iterative alignment module which employs a gradual refinement scheme for sub-alignments, yielding more accurate motion compensation. To further enhance the alignment accuracy and temporal consistency, we develop a non-parametric re-weighting method, where the importance of each neighboring frame is adaptively evaluated in a spatial-wise way for aggregation. By virtue of the proposed strategies, our model achieves state-of-the-art performance on multiple benchmarks across a range of video restoration tasks including video super-resolution, denoising and deblurring. Our project is available in \url{https://github.com/redrock303/Revisiting-Temporal-Alignment-for-Video-Restoration.git}.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.