ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.15016
17
22

Joint Modeling of Code-Switched and Monolingual ASR via Conditional Factorization

29 November 2021
Brian Yan
Chunlei Zhang
Meng Yu
Shi-Xiong Zhang
Siddharth Dalmia
Dan Berrebbi
Chao Weng
Shinji Watanabe
Dong Yu
ArXivPDFHTML
Abstract

Conversational bilingual speech encompasses three types of utterances: two purely monolingual types and one intra-sententially code-switched type. In this work, we propose a general framework to jointly model the likelihoods of the monolingual and code-switch sub-tasks that comprise bilingual speech recognition. By defining the monolingual sub-tasks with label-to-frame synchronization, our joint modeling framework can be conditionally factorized such that the final bilingual output, which may or may not be code-switched, is obtained given only monolingual information. We show that this conditionally factorized joint framework can be modeled by an end-to-end differentiable neural network. We demonstrate the efficacy of our proposed model on bilingual Mandarin-English speech recognition across both monolingual and code-switched corpora.

View on arXiv
Comments on this paper