ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.11755
67
112
v1v2v3v4 (latest)

Guided-TTS:Text-to-Speech with Untranscribed Speech

23 November 2021
Heeseung Kim
Sungwon Kim
Sungroh Yoon
    DiffMBDL
ArXiv (abs)PDFHTML
Abstract

Most neural text-to-speech (TTS) models require <speech, transcript> paired data from the desired speaker for high-quality speech synthesis, which limits the usage of large amounts of untranscribed data for training. In this work, we present Guided-TTS, a high-quality TTS model that learns to generate speech from untranscribed speech data. Guided-TTS combines an unconditional diffusion probabilistic model with a separately trained phoneme classifier for text-to-speech. By modeling the unconditional distribution for speech, our model can utilize the untranscribed data for training. For text-to-speech synthesis, we guide the generative process of the unconditional DDPM via phoneme classification to produce mel-spectrograms from the conditional distribution given transcript. We show that Guided-TTS achieves comparable performance with the existing methods without any transcript for LJSpeech. Our results further show that a single speaker-dependent phoneme classifier trained on multispeaker large-scale data can guide unconditional DDPMs for various speakers to perform TTS.

View on arXiv
Comments on this paper