LIVEJoin the current RTAI Connect sessionJoin now

42
20

BarrierNet: A Safety-Guaranteed Layer for Neural Networks

Wei Xiao
Ramin Hasani
Xiao Li
Daniela Rus
Abstract

This paper introduces differentiable higher-order control barrier functions (CBF) that are end-to-end trainable together with learning systems. CBFs are usually overly conservative, while guaranteeing safety. Here, we address their conservativeness by softening their definitions using environmental dependencies without loosing safety guarantees, and embed them into differentiable quadratic programs. These novel safety layers, termed a BarrierNet, can be used in conjunction with any neural network-based controller, and can be trained by gradient descent. BarrierNet allows the safety constraints of a neural controller be adaptable to changing environments. We evaluate them on a series of control problems such as traffic merging and robot navigations in 2D and 3D space, and demonstrate their effectiveness compared to state-of-the-art approaches.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.