ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.08656
18
9

Causal Effect Variational Autoencoder with Uniform Treatment

16 November 2021
Daniel Jiwoong Im
Kyunghyun Cho
N. Razavian
    OOD
    CML
    BDL
ArXivPDFHTML
Abstract

Domain adaptation and covariate shift are big issues in deep learning and they ultimately affect any causal inference algorithms that rely on deep neural networks. Causal effect variational autoencoder (CEVAE) is trained to predict the outcome given observational treatment data and it suffers from the distribution shift at test time. In this paper, we introduce uniform treatment variational autoencoders (UTVAE) that are trained with uniform treatment distribution using importance sampling and show that using uniform treatment over observational treatment distribution leads to better causal inference by mitigating the distribution shift that occurs from training to test time. We also explore the combination of uniform and observational treatment distributions with inference and generative network training objectives to find a better training procedure for inferring treatment effects. Experimentally, we find that the proposed UTVAE yields better absolute average treatment effect error and precision in the estimation of heterogeneous effect error than the CEVAE on synthetic and IHDP datasets.

View on arXiv
Comments on this paper