ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.08322
22
3

An Empirical Study of Finding Similar Exercises

16 November 2021
Tongwen Huang
Xihua Li
ArXivPDFHTML
Abstract

Education artificial intelligence aims to profit tasks in the education domain such as intelligent test paper generation and consolidation exercises where the main technique behind is how to match the exercises, known as the finding similar exercises(FSE) problem. Most of these approaches emphasized their model abilities to represent the exercise, unfortunately there are still many challenges such as the scarcity of data, insufficient understanding of exercises and high label noises. We release a Chinese education pre-trained language model BERTEdu_{Edu}Edu​ for the label-scarce dataset and introduce the exercise normalization to overcome the diversity of mathematical formulas and terms in exercise. We discover new auxiliary tasks in an innovative way depends on problem-solving ideas and propose a very effective MoE enhanced multi-task model for FSE task to attain better understanding of exercises. In addition, confidence learning was utilized to prune train-set and overcome high noises in labeling data. Experiments show that these methods proposed in this paper are very effective.

View on arXiv
Comments on this paper