ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.07518
11
27

Time-Frequency Attention for Monaural Speech Enhancement

15 November 2021
Qiquan Zhang
Qi Song
Zhaoheng Ni
Aaron Nicolson
Haizhou Li
ArXivPDFHTML
Abstract

Most studies on speech enhancement generally don't consider the energy distribution of speech in time-frequency (T-F) representation, which is important for accurate prediction of mask or spectra. In this paper, we present a simple yet effective T-F attention (TFA) module, where a 2-D attention map is produced to provide differentiated weights to the spectral components of T-F representation. To validate the effectiveness of our proposed TFA module, we use the residual temporal convolution network (ResTCN) as the backbone network and conduct extensive experiments on two commonly used training targets. Our experiments demonstrate that applying our TFA module significantly improves the performance in terms of five objective evaluation metrics with negligible parameter overhead. The evaluation results show that the proposed ResTCN with the TFA module (ResTCN+TFA) consistently outperforms other baselines by a large margin.

View on arXiv
Comments on this paper