ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.07119
11
2

Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

13 November 2021
Matej Klemen
Marko Robnik-Šikonja
ArXivPDFHTML
Abstract

Paraphrasing is a useful natural language processing task that can contribute to more diverse generated or translated texts. Natural language inference (NLI) and paraphrasing share some similarities and can benefit from a joint approach. We propose a novel methodology for the extraction of paraphrasing datasets from NLI datasets and cleaning existing paraphrasing datasets. Our approach is based on bidirectional entailment; namely, if two sentences can be mutually entailed, they are paraphrases. We evaluate our approach using several large pretrained transformer language models in the monolingual and cross-lingual setting. The results show high quality of extracted paraphrasing datasets and surprisingly high noise levels in two existing paraphrasing datasets.

View on arXiv
Comments on this paper