ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.07102
54
11

Deep Neural Networks for Automatic Grain-matrix Segmentation in Plane and Cross-polarized Sandstone Photomicrographs

13 November 2021
Rajdeep Das
Ajoy Mondal
T. Chakraborty
Kuntal Ghosh
ArXivPDFHTML
Abstract

Grain segmentation of sandstone that is partitioning the grain from its surrounding matrix/cement in the thin section is the primary step for computer-aided mineral identification and sandstone classification. The microscopic images of sandstone contain many mineral grains and their surrounding matrix/cement. The distinction between adjacent grains and the matrix is often ambiguous, making grain segmentation difficult. Various solutions exist in literature to handle these problems; however, they are not robust against sandstone petrography's varied pattern. In this paper, we formulate grain segmentation as a pixel-wise two-class (i.e., grain and background) semantic segmentation task. We develop a deep learning-based end-to-end trainable framework named Deep Semantic Grain Segmentation network (DSGSN), a data-driven method, and provide a generic solution. As per the authors' knowledge, this is the first work where the deep neural network is explored to solve the grain segmentation problem. Extensive experiments on microscopic images highlight that our method obtains better segmentation accuracy than various segmentation architectures with more parameters.

View on arXiv
Comments on this paper