ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.06211
15
2
v1v2v3 (latest)

Model-Based Reinforcement Learning for Stochastic Hybrid Systems

11 November 2021
Hany Abdulsamad
Jan Peters
ArXiv (abs)PDFHTML
Abstract

Optimal control of general nonlinear systems is a central challenge in automation. Enabled by powerful function approximators, data-driven approaches to control have recently successfully tackled challenging robotic applications. However, such methods often obscure the structure of dynamics and control behind black-box over-parameterized representations, thus limiting our ability to understand closed-loop behavior. This paper adopts a hybrid-system view of nonlinear modeling and control that lends an explicit hierarchical structure to the problem and breaks down complex dynamics into simpler localized units. We consider a sequence modeling paradigm that captures the temporal structure of the data and derive an expectation-maximization (EM) algorithm that automatically decomposes nonlinear dynamics into stochastic piecewise affine dynamical systems with nonlinear boundaries. Furthermore, we show that these time-series models naturally admit a closed-loop extension that we use to extract local polynomial feedback controllers from nonlinear experts via behavioral cloning. Finally, we introduce a novel hybrid relative entropy policy search (Hb-REPS) technique that incorporates the hierarchical nature of hybrid systems and optimizes a set of time-invariant local feedback controllers derived from a local polynomial approximation of a global state-value function.

View on arXiv
Comments on this paper