ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.05320
85
9
v1v2 (latest)

Robust Estimation for Random Graphs

9 November 2021
Jayadev Acharya
Ayush Jain
Gautam Kamath
A. Suresh
Huanyu Zhang
ArXiv (abs)PDFHTML
Abstract

We study the problem of robustly estimating the parameter ppp of an Erd\H{o}s-R\'enyi random graph on nnn nodes, where a γ\gammaγ fraction of nodes may be adversarially corrupted. After showing the deficiencies of canonical estimators, we design a computationally-efficient spectral algorithm which estimates ppp up to accuracy O~(p(1−p)/n+γp(1−p)/n+γ/n)\tilde O(\sqrt{p(1-p)}/n + \gamma\sqrt{p(1-p)} /\sqrt{n}+ \gamma/n)O~(p(1−p)​/n+γp(1−p)​/n​+γ/n) for γ<1/60\gamma < 1/60γ<1/60. Furthermore, we give an inefficient algorithm with similar accuracy for all γ<1/2\gamma <1/2γ<1/2, the information-theoretic limit. Finally, we prove a nearly-matching statistical lower bound, showing that the error of our algorithms is optimal up to logarithmic factors.

View on arXiv
Comments on this paper