ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.03967
19
25

A Deep Reinforcement Learning Approach for Composing Moving IoT Services

6 November 2021
A. G. Neiat
A. Bouguettaya
M. N. Ba-Hutair
ArXivPDFHTML
Abstract

We develop a novel framework for efficiently and effectively discovering crowdsourced services that move in close proximity to a user over a period of time. We introduce a moving crowdsourced service model which is modelled as a moving region. We propose a deep reinforcement learning-based composition approach to select and compose moving IoT services considering quality parameters. Additionally, we develop a parallel flock-based service discovery algorithm as a ground-truth to measure the accuracy of the proposed approach. The experiments on two real-world datasets verify the effectiveness and efficiency of the deep reinforcement learning-based approach.

View on arXiv
Comments on this paper