ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.01684
19
2

Rethinking the Knowledge Distillation From the Perspective of Model Calibration

31 October 2021
Lehan Yang
Jincen Song
ArXivPDFHTML
Abstract

Recent years have witnessed dramatically improvements in the knowledge distillation, which can generate a compact student model for better efficiency while retaining the model effectiveness of the teacher model. Previous studies find that: more accurate teachers do not necessary make for better teachers due to the mismatch of abilities. In this paper, we aim to analysis the phenomenon from the perspective of model calibration. We found that the larger teacher model may be too over-confident, thus the student model cannot effectively imitate. While, after the simple model calibration of the teacher model, the size of the teacher model has a positive correlation with the performance of the student model.

View on arXiv
Comments on this paper