ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.01326
19
8

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

2 November 2021
Peter Wu
Jiatong Shi
Yifan Zhong
Shinji Watanabe
A. Black
ArXivPDFHTML
Abstract

Speech processing systems currently do not support the vast majority of languages, in part due to the lack of data in low-resource languages. Cross-lingual transfer offers a compelling way to help bridge this digital divide by incorporating high-resource data into low-resource systems. Current cross-lingual algorithms have shown success in text-based tasks and speech-related tasks over some low-resource languages. However, scaling up speech systems to support hundreds of low-resource languages remains unsolved. To help bridge this gap, we propose a language similarity approach that can efficiently identify acoustic cross-lingual transfer pairs across hundreds of languages. We demonstrate the effectiveness of our approach in language family classification, speech recognition, and speech synthesis tasks.

View on arXiv
Comments on this paper