Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.01256
Cited By
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems
1 November 2021
Jimmy T.H. Smith
Scott W. Linderman
David Sussillo
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems"
16 / 16 papers shown
Title
Towards Scalable and Stable Parallelization of Nonlinear RNNs
Xavier Gonzalez
Andrew Warrington
Jimmy T.H. Smith
Scott W. Linderman
190
10
0
17 Jan 2025
Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems
Amber Hu
D. Zoltowski
Aditya Nair
David Anderson
Lea Duncker
Scott W. Linderman
69
3
0
19 Jul 2024
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
464
2,384
0
18 Oct 2020
Variational Deep Learning for the Identification and Reconstruction of Chaotic and Stochastic Dynamical Systems from Noisy and Partial Observations
Duong Nguyen
Said Ouala
Lucas Drumetz
Ronan Fablet
29
13
0
04 Sep 2020
How recurrent networks implement contextual processing in sentiment analysis
Niru Maheswaranathan
David Sussillo
39
22
0
17 Apr 2020
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
331
10,591
0
17 Feb 2020
A Dynamically Controlled Recurrent Neural Network for Modeling Dynamical Systems
Yiwei Fu
S. Saab
A. Ray
Michael Hauser
AI4CE
39
8
0
31 Oct 2019
Universality and individuality in neural dynamics across large populations of recurrent networks
Niru Maheswaranathan
Alex H. Williams
Matthew D. Golub
Surya Ganguli
David Sussillo
59
145
0
19 Jul 2019
Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics
Niru Maheswaranathan
Alex H. Williams
Matthew D. Golub
Surya Ganguli
David Sussillo
55
81
0
25 Jun 2019
Gated recurrent units viewed through the lens of continuous time dynamical systems
I. Jordan
Piotr A. Sokól
Il Memming Park
39
58
0
03 Jun 2019
Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI
G. Koppe
Hazem Toutounji
P. Kirsch
S. Lis
Daniel Durstewitz
MedIm
47
76
0
19 Feb 2019
Learning interpretable continuous-time models of latent stochastic dynamical systems
Lea Duncker
G. Bohner
Julien Boussard
M. Sahani
34
77
0
12 Feb 2019
Tree-Structured Recurrent Switching Linear Dynamical Systems for Multi-Scale Modeling
Josue Nassar
Scott W. Linderman
M. Bugallo
Il-Su Park
AI4CE
28
73
0
29 Nov 2018
Emergence of grid-like representations by training recurrent neural networks to perform spatial localization
Christopher J. Cueva
Xue-Xin Wei
43
216
0
21 Mar 2018
Convolutional Recurrent Neural Networks for Music Classification
Keunwoo Choi
Gyorgy Fazekas
Mark Sandler
Kyunghyun Cho
343
476
0
14 Sep 2016
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
883
23,310
0
03 Jun 2014
1