ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.15528
18
21

Deconvolutional Networks on Graph Data

29 October 2021
Jia Li
Jiajin Li
Yang Liu
Jianwei Yu
Yueting Li
Hongtao Cheng
    GNN
ArXivPDFHTML
Abstract

In this paper, we consider an inverse problem in graph learning domain -- ``given the graph representations smoothed by Graph Convolutional Network (GCN), how can we reconstruct the input graph signal?" We propose Graph Deconvolutional Network (GDN) and motivate the design of GDN via a combination of inverse filters in spectral domain and de-noising layers in wavelet domain, as the inverse operation results in a high frequency amplifier and may amplify the noise. We demonstrate the effectiveness of the proposed method on several tasks including graph feature imputation and graph structure generation.

View on arXiv
Comments on this paper