Fairer LP-based Online Allocation via Analytic Center

In this paper, we consider an online resource allocation problem where a decision maker accepts or rejects incoming customer requests irrevocably in order to maximize expected reward given limited resources. At each time, a new order/customer/bid is revealed with a request of some resource(s) and a reward. We consider a stochastic setting where all the orders are i.i.d. sampled from an unknown distribution. Such formulation arises from many classic applications such as the canonical (quantity-based) network revenue management problem and the Adwords problem. While the literature on the topic mainly focuses on regret minimization, our paper considers the \textit{fairness} aspect of the problem. On a high level, we define the fairness in a way that a fair online algorithm should treat similar agents/customers similarly, and the decision made for similar agents/customers should be consistent over time. To achieve this goal, we define the fair offline solution as the analytic center of the offline optimal solution set, and introduce \textit{cumulative unfairness} as the cumulative deviation from the online solutions to the fair offline solution over time. We propose a fair algorithm based on an interior-point LP solver and a mechanism that dynamically detects unfair resource spending. Our algorithm achieves cumulative unfairness on the scale of order , while maintains the regret to be bounded without dependency on . In addition, compared to the literature, our result is produced under less restrictive assumptions on the degeneracy of the underlying linear program.
View on arXiv