ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.14524
23
8

Model based Multi-agent Reinforcement Learning with Tensor Decompositions

27 October 2021
Pascal R. van der Vaart
Anuj Mahajan
Shimon Whiteson
    AI4CE
ArXivPDFHTML
Abstract

A challenge in multi-agent reinforcement learning is to be able to generalize over intractable state-action spaces. Inspired from Tesseract [Mahajan et al., 2021], this position paper investigates generalisation in state-action space over unexplored state-action pairs by modelling the transition and reward functions as tensors of low CP-rank. Initial experiments on synthetic MDPs show that using tensor decompositions in a model-based reinforcement learning algorithm can lead to much faster convergence if the true transition and reward functions are indeed of low rank.

View on arXiv
Comments on this paper