ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.13205
16
4

A Probabilistic Framework for Knowledge Graph Data Augmentation

25 October 2021
Jatin Chauhan
Priyanshu Gupta
Pasquale Minervini
ArXivPDFHTML
Abstract

We present NNMFAug, a probabilistic framework to perform data augmentation for the task of knowledge graph completion to counter the problem of data scarcity, which can enhance the learning process of neural link predictors. Our method can generate potentially diverse triples with the advantage of being efficient and scalable as well as agnostic to the choice of the link prediction model and dataset used. Experiments and analysis done on popular models and benchmarks show that NNMFAug can bring notable improvements over the baselines.

View on arXiv
Comments on this paper