ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.12724
19
76

Instance-Conditional Knowledge Distillation for Object Detection

25 October 2021
Zijian Kang
Peizhen Zhang
X. Zhang
Jian Sun
N. Zheng
ArXivPDFHTML
Abstract

Knowledge distillation has shown great success in classification, however, it is still challenging for detection. In a typical image for detection, representations from different locations may have different contributions to detection targets, making the distillation hard to balance. In this paper, we propose a conditional distillation framework to distill the desired knowledge, namely knowledge that is beneficial in terms of both classification and localization for every instance. The framework introduces a learnable conditional decoding module, which retrieves information given each target instance as query. Specifically, we encode the condition information as query and use the teacher's representations as key. The attention between query and key is used to measure the contribution of different features, guided by a localization-recognition-sensitive auxiliary task. Extensive experiments demonstrate the efficacy of our method: we observe impressive improvements under various settings. Notably, we boost RetinaNet with ResNet-50 backbone from 37.4 to 40.7 mAP (+3.3) under 1x schedule, that even surpasses the teacher (40.4 mAP) with ResNet-101 backbone under 3x schedule. Code has been released on https://github.com/megvii-research/ICD.

View on arXiv
Comments on this paper