ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.12631
18
2

Time series signal recovery methods: comparative study

25 October 2021
Firuz Kamalov
Hana Sulieman
    AI4TS
ArXivPDFHTML
Abstract

Signal data often contains missing values. Effective replacement (imputation) of the missing values can have significant positive effects on processing the signal. In this paper, we compare three commonly employed methods for estimating missing values in time series data: forward fill, backward fill, and mean fill. We carry out a large scale experimental analysis using 3,600 AR(1)-based simulated time series to determine the optimal method for estimating missing values. The results of the numerical experiments show that the forward and backward fill methods are better suited for times series with large positive correlations, while the mean fill method is better suited for times series with low or negative correlations. The extensive and exhaustive nature of the numerical experiments provides a definitive answer to the comparison of the three imputation methods.

View on arXiv
Comments on this paper