ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.11739
20
0

UBR2^22S: Uncertainty-Based Resampling and Reweighting Strategy for Unsupervised Domain Adaptation

22 October 2021
Tobias Ringwald
Rainer Stiefelhagen
ArXivPDFHTML
Abstract

Unsupervised domain adaptation (UDA) deals with the adaptation process of a model to an unlabeled target domain while annotated data is only available for a given source domain. This poses a challenging task, as the domain shift between source and target instances deteriorates a model's performance when not addressed. In this paper, we propose UBR2^22S - the Uncertainty-Based Resampling and Reweighting Strategy - to tackle this problem. UBR2^22S employs a Monte Carlo dropout-based uncertainty estimate to obtain per-class probability distributions, which are then used for dynamic resampling of pseudo-labels and reweighting based on their sample likelihood and the accompanying decision error. Our proposed method achieves state-of-the-art results on multiple UDA datasets with single and multi-source adaptation tasks and can be applied to any off-the-shelf network architecture. Code for our method is available at https://gitlab.com/tringwald/UBR2S.

View on arXiv
Comments on this paper