29
0

Boosting Federated Learning in Resource-Constrained Networks

Abstract

Federated learning (FL) enables a set of client devices to collaboratively train a model without sharing raw data. This process, though, operates under the constrained computation and communication resources of edge devices. These constraints combined with systems heterogeneity force some participating clients to perform fewer local updates than expected by the server, thus slowing down convergence. Exhaustive tuning of hyperparameters in FL, furthermore, can be resource-intensive, without which the convergence is adversely affected. In this work, we propose GeL, the guess and learn algorithm. GeL enables constrained edge devices to perform additional learning through guessed updates on top of gradient-based steps. These guesses are gradientless, i.e., participating clients leverage them for free. Our generic guessing algorithm (i) can be flexibly combined with several state-of-the-art algorithms including FedProx, FedNova or FedYogi; and (ii) achieves significantly improved performance when the learning rates are not best tuned. We conduct extensive experiments and show that GeL can boost empirical convergence by up to 40% in resource-constrained networks while relieving the need for exhaustive learning rate tuning.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.