ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.10774
6
18

SciXGen: A Scientific Paper Dataset for Context-Aware Text Generation

20 October 2021
Hong Chen
Hiroya Takamura
Hideki Nakayama
ArXivPDFHTML
Abstract

Generating texts in scientific papers requires not only capturing the content contained within the given input but also frequently acquiring the external information called \textit{context}. We push forward the scientific text generation by proposing a new task, namely \textbf{context-aware text generation} in the scientific domain, aiming at exploiting the contributions of context in generated texts. To this end, we present a novel challenging large-scale \textbf{Sci}entific Paper Dataset for Conte\textbf{X}t-Aware Text \textbf{Gen}eration (SciXGen), consisting of well-annotated 205,304 papers with full references to widely-used objects (e.g., tables, figures, algorithms) in a paper. We comprehensively benchmark, using state-of-the-arts, the efficacy of our newly constructed SciXGen dataset in generating description and paragraph. Our dataset and benchmarks will be made publicly available to hopefully facilitate the scientific text generation research.

View on arXiv
Comments on this paper