ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.10481
42
0

Unified Style Transfer

20 October 2021
Guanjie Huang
Hongjian He
Xiang Li
Xingchen Li
Ziang Liu
ArXiv (abs)PDFHTML
Abstract

Currently, it is hard to compare and evaluate different style transfer algorithms due to chaotic definitions of style and the absence of agreed objective validation methods in the study of style transfer. In this paper, a novel approach, the Unified Style Transfer (UST) model, is proposed. With the introduction of a generative model for internal style representation, UST can transfer images in two approaches, i.e., Domain-based and Image-based, simultaneously. At the same time, a new philosophy based on the human sense of art and style distributions for evaluating the transfer model is presented and demonstrated, called Statistical Style Analysis. It provides a new path to validate style transfer models' feasibility by validating the general consistency between internal style representation and art facts. Besides, the translation-invariance of AdaIN features is also discussed.

View on arXiv
Comments on this paper