ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.09923
77
2
v1v2v3 (latest)

Speech Enhancement-assisted Stargan Voice Conversion in Noisy Environments

19 October 2021
Yun-Ju Chan
Chiang-Jen Peng
Syu-Siang Wang
Hsin-Min Wang
Yu Tsao
T. Chi
ArXiv (abs)PDFHTML
Abstract

Numerous voice conversion (VC) techniques have been proposed for the conversion of voices among different speakers. Although the decent quality of converted speech can be observed when VC is applied in a clean environment, the quality will drop sharply when the system is running under noisy conditions. In order to address this issue, we propose a novel enhancement-based StarGAN (E-StarGAN) VC system, which leverages a speech enhancement (SE) technique for signal pre-processing. SE systems are generally used to reduce noise components in noisy speech and to generate enhanced speech for downstream application tasks. Therefore, we investigated the effectiveness of E-StarGAN, which combines VC and SE, and demonstrated the robustness of the proposed approach in various noisy environments. The results of VC experiments conducted on a Mandarin dataset show that when combined with SE, the proposed E-StarGAN VC model is robust to unseen noises. In addition, the subjective listening test results show that the proposed E-StarGAN model can improve the sound quality of speech signals converted from noise-corrupted source utterances.

View on arXiv
Comments on this paper