ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.09625
24
62

Personalized Speech Enhancement: New Models and Comprehensive Evaluation

18 October 2021
Sefik Emre Eskimez
Takuya Yoshioka
Huaming Wang
Xiaofei Wang
Zhuo Chen
Xuedong Huang
ArXivPDFHTML
Abstract

Personalized speech enhancement (PSE) models utilize additional cues, such as speaker embeddings like d-vectors, to remove background noise and interfering speech in real-time and thus improve the speech quality of online video conferencing systems for various acoustic scenarios. In this work, we propose two neural networks for PSE that achieve superior performance to the previously proposed VoiceFilter. In addition, we create test sets that capture a variety of scenarios that users can encounter during video conferencing. Furthermore, we propose a new metric to measure the target speaker over-suppression (TSOS) problem, which was not sufficiently investigated before despite its critical importance in deployment. Besides, we propose multi-task training with a speech recognition back-end. Our results show that the proposed models can yield better speech recognition accuracy, speech intelligibility, and perceptual quality than the baseline models, and the multi-task training can alleviate the TSOS issue in addition to improving the speech recognition accuracy.

View on arXiv
Comments on this paper