109
25

Who calls the shots? Rethinking Few-Shot Learning for Audio

Abstract

Few-shot learning aims to train models that can recognize novel classes given just a handful of labeled examples, known as the support set. While the field has seen notable advances in recent years, they have often focused on multi-class image classification. Audio, in contrast, is often multi-label due to overlapping sounds, resulting in unique properties such as polyphony and signal-to-noise ratios (SNR). This leads to unanswered questions concerning the impact such audio properties may have on few-shot learning system design, performance, and human-computer interaction, as it is typically up to the user to collect and provide inference-time support set examples. We address these questions through a series of experiments designed to elucidate the answers to these questions. We introduce two novel datasets, FSD-MIX-CLIPS and FSD-MIX-SED, whose programmatic generation allows us to explore these questions systematically. Our experiments lead to audio-specific insights on few-shot learning, some of which are at odds with recent findings in the image domain: there is no best one-size-fits-all model, method, and support set selection criterion. Rather, it depends on the expected application scenario. Our code and data are available at https://github.com/wangyu/rethink-audio-fsl.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.