The value of biomedical research--a 1.7trillionannualinvestment−−isultimatelydeterminedbyitsdownstream,real−worldimpact.Currentobjectivepredictorsofimpactrestonproxy,reductivemetricsofdissemination,suchaspapercitationrates,whoserelationtoreal−worldtranslationremainsunquantified.Herewesoughttodeterminethecomparativepredictabilityoffuturereal−worldtranslation−−asindexedbyinclusioninpatents,guidelinesorpolicydocuments−−fromcomplexmodelsoftheabstract−levelcontentofbiomedicalpublicationsversuscitationsandpublicationmeta−dataalone.Wedevelopasuiteofrepresentationalanddiscriminativemathematicalmodelsofmulti−scalepublicationdata,quantifyingpredictiveperformanceout−of−sample,ahead−of−time,acrossmajorbiomedicaldomains,usingtheentirecorpusofbiomedicalresearchcapturedbyMicrosoftAcademicGraphfrom1990to2019,encompassing43.3millionpapersacrossalldomains.Weshowthatcitationsareonlymoderatelypredictiveoftranslationalimpactasjudgedbyinclusioninpatents,guidelines,orpolicydocuments.Bycontrast,high−dimensionalmodelsofpublicationtitles,abstractsandmetadataexhibithighfidelity(AUROC>0.9),generaliseacrosstimeandthematicdomain,andtransfertothetaskofrecognisingpapersofNobelLaureates.Thetranslationalimpactofapaperindexedbyinclusioninpatents,guidelines,orpolicydocumentscanbepredicted−−out−of−sampleandahead−of−time−−withsubstantiallyhigherfidelityfromcomplexmodelsofitsabstract−levelcontentthanfrommodelsofpublicationmeta−dataorcitationmetrics.Wearguethatcontent−basedmodelsofimpactaresuperiorinperformancetoconventional,citation−basedmeasures,andsustainastrongerevidence−basedclaimtotheobjectivemeasurementoftranslationalpotential.