ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.08904
12
10

Deep forecasting of translational impact in medical research

17 October 2021
Amy Nelson
Robert J. Gray
James K. Ruffle
Henry Watkins
Dan Herron
Nick Sorros
Danil Mikhailov
M. Jorge Cardoso
Sebastien Ourselin
N. McNally
Bryan Williams
G. Rees
P. Nachev
    AI4CE
ArXivPDFHTML
Abstract

The value of biomedical research--a 1.7trillionannualinvestment−−isultimatelydeterminedbyitsdownstream,real−worldimpact.Currentobjectivepredictorsofimpactrestonproxy,reductivemetricsofdissemination,suchaspapercitationrates,whoserelationtoreal−worldtranslationremainsunquantified.Herewesoughttodeterminethecomparativepredictabilityoffuturereal−worldtranslation−−asindexedbyinclusioninpatents,guidelinesorpolicydocuments−−fromcomplexmodelsoftheabstract−levelcontentofbiomedicalpublicationsversuscitationsandpublicationmeta−dataalone.Wedevelopasuiteofrepresentationalanddiscriminativemathematicalmodelsofmulti−scalepublicationdata,quantifyingpredictiveperformanceout−of−sample,ahead−of−time,acrossmajorbiomedicaldomains,usingtheentirecorpusofbiomedicalresearchcapturedbyMicrosoftAcademicGraphfrom1990to2019,encompassing43.3millionpapersacrossalldomains.Weshowthatcitationsareonlymoderatelypredictiveoftranslationalimpactasjudgedbyinclusioninpatents,guidelines,orpolicydocuments.Bycontrast,high−dimensionalmodelsofpublicationtitles,abstractsandmetadataexhibithighfidelity(AUROC>0.9),generaliseacrosstimeandthematicdomain,andtransfertothetaskofrecognisingpapersofNobelLaureates.Thetranslationalimpactofapaperindexedbyinclusioninpatents,guidelines,orpolicydocumentscanbepredicted−−out−of−sampleandahead−of−time−−withsubstantiallyhigherfidelityfromcomplexmodelsofitsabstract−levelcontentthanfrommodelsofpublicationmeta−dataorcitationmetrics.Wearguethatcontent−basedmodelsofimpactaresuperiorinperformancetoconventional,citation−basedmeasures,andsustainastrongerevidence−basedclaimtotheobjectivemeasurementoftranslationalpotential.1.7 trillion annual investment--is ultimately determined by its downstream, real-world impact. Current objective predictors of impact rest on proxy, reductive metrics of dissemination, such as paper citation rates, whose relation to real-world translation remains unquantified. Here we sought to determine the comparative predictability of future real-world translation--as indexed by inclusion in patents, guidelines or policy documents--from complex models of the abstract-level content of biomedical publications versus citations and publication meta-data alone. We develop a suite of representational and discriminative mathematical models of multi-scale publication data, quantifying predictive performance out-of-sample, ahead-of-time, across major biomedical domains, using the entire corpus of biomedical research captured by Microsoft Academic Graph from 1990 to 2019, encompassing 43.3 million papers across all domains. We show that citations are only moderately predictive of translational impact as judged by inclusion in patents, guidelines, or policy documents. By contrast, high-dimensional models of publication titles, abstracts and metadata exhibit high fidelity (AUROC > 0.9), generalise across time and thematic domain, and transfer to the task of recognising papers of Nobel Laureates. The translational impact of a paper indexed by inclusion in patents, guidelines, or policy documents can be predicted--out-of-sample and ahead-of-time--with substantially higher fidelity from complex models of its abstract-level content than from models of publication meta-data or citation metrics. We argue that content-based models of impact are superior in performance to conventional, citation-based measures, and sustain a stronger evidence-based claim to the objective measurement of translational potential.1.7trillionannualinvestment−−isultimatelydeterminedbyitsdownstream,real−worldimpact.Currentobjectivepredictorsofimpactrestonproxy,reductivemetricsofdissemination,suchaspapercitationrates,whoserelationtoreal−worldtranslationremainsunquantified.Herewesoughttodeterminethecomparativepredictabilityoffuturereal−worldtranslation−−asindexedbyinclusioninpatents,guidelinesorpolicydocuments−−fromcomplexmodelsoftheabstract−levelcontentofbiomedicalpublicationsversuscitationsandpublicationmeta−dataalone.Wedevelopasuiteofrepresentationalanddiscriminativemathematicalmodelsofmulti−scalepublicationdata,quantifyingpredictiveperformanceout−of−sample,ahead−of−time,acrossmajorbiomedicaldomains,usingtheentirecorpusofbiomedicalresearchcapturedbyMicrosoftAcademicGraphfrom1990to2019,encompassing43.3millionpapersacrossalldomains.Weshowthatcitationsareonlymoderatelypredictiveoftranslationalimpactasjudgedbyinclusioninpatents,guidelines,orpolicydocuments.Bycontrast,high−dimensionalmodelsofpublicationtitles,abstractsandmetadataexhibithighfidelity(AUROC>0.9),generaliseacrosstimeandthematicdomain,andtransfertothetaskofrecognisingpapersofNobelLaureates.Thetranslationalimpactofapaperindexedbyinclusioninpatents,guidelines,orpolicydocumentscanbepredicted−−out−of−sampleandahead−of−time−−withsubstantiallyhigherfidelityfromcomplexmodelsofitsabstract−levelcontentthanfrommodelsofpublicationmeta−dataorcitationmetrics.Wearguethatcontent−basedmodelsofimpactaresuperiorinperformancetoconventional,citation−basedmeasures,andsustainastrongerevidence−basedclaimtotheobjectivemeasurementoftranslationalpotential.

View on arXiv
Comments on this paper