ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.08318
21
3

Dynamic probabilistic logic models for effective abstractions in RL

15 October 2021
Harsha Kokel
Arjun Manoharan
Sriraam Natarajan
Balaraman Ravindran
Prasad Tadepalli
ArXivPDFHTML
Abstract

State abstraction enables sample-efficient learning and better task transfer in complex reinforcement learning environments. Recently, we proposed RePReL (Kokel et al. 2021), a hierarchical framework that leverages a relational planner to provide useful state abstractions for learning. We present a brief overview of this framework and the use of a dynamic probabilistic logic model to design these state abstractions. Our experiments show that RePReL not only achieves better performance and efficient learning on the task at hand but also demonstrates better generalization to unseen tasks.

View on arXiv
Comments on this paper