ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.08187
6
11

Crop Rotation Modeling for Deep Learning-Based Parcel Classification from Satellite Time Series

15 October 2021
Félix Quinton
Loic Landrieu
ArXivPDFHTML
Abstract

While annual crop rotations play a crucial role for agricultural optimization, they have been largely ignored for automated crop type mapping. In this paper, we take advantage of the increasing quantity of annotated satellite data to propose the first deep learning approach modeling simultaneously the inter- and intra-annual agricultural dynamics of parcel classification. Along with simple training adjustments, our model provides an improvement of over 6.3 mIoU points over the current state-of-the-art of crop classification. Furthermore, we release the first large-scale multi-year agricultural dataset with over 300,000 annotated parcels.

View on arXiv
Comments on this paper