ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.08128
43
18

Label-Wise Graph Convolutional Network for Heterophilic Graphs

15 October 2021
Enyan Dai
Shijie Zhou
Zhimeng Guo
Suhang Wang
ArXivPDFHTML
Abstract

Graph Neural Networks (GNNs) have achieved remarkable performance in modeling graphs for various applications. However, most existing GNNs assume the graphs exhibit strong homophily in node labels, i.e., nodes with similar labels are connected in the graphs. They fail to generalize to heterophilic graphs where linked nodes may have dissimilar labels and attributes. Therefore, in this paper, we investigate a novel framework that performs well on graphs with either homophily or heterophily. More specifically, we propose a label-wise message passing mechanism to avoid the negative effects caused by aggregating dissimilar node representations and preserve the heterophilic contexts for representation learning. We further propose a bi-level optimization method to automatically select the model for graphs with homophily/heterophily. Theoretical analysis and extensive experiments demonstrate the effectiveness of our proposed framework for node classification on both homophilic and heterophilic graphs.

View on arXiv
Comments on this paper