ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.08126
23
2

Learning Multi-agent Action Coordination via Electing First-move Agent

20 September 2021
Jingqing Ruan
Linghui Meng
Xuantang Xiong
Dengpeng Xing
Bo Xu
ArXivPDFHTML
Abstract

Learning to coordinate actions among agents is essential in complicated multi-agent systems. Prior works are constrained mainly by the assumption that all agents act simultaneously, and asynchronous action coordination between agents is rarely considered. This paper introduces a bi-level multi-agent decision hierarchy for coordinated behavior planning. We propose a novel election mechanism in which we adopt a graph convolutional network to model the interaction among agents and elect a first-move agent for asynchronous guidance. We also propose a dynamically weighted mixing network to effectively reduce the misestimation of the value function during training. This work is the first to explicitly model the asynchronous multi-agent action coordination, and this explicitness enables to choose the optimal first-move agent. The results on Cooperative Navigation and Google Football demonstrate that the proposed algorithm can achieve superior performance in cooperative environments. Our code is available at \url{https://github.com/Amanda-1997/EFA-DWM}.

View on arXiv
Comments on this paper