29
0

Query-Reward Tradeoffs in Multi-Armed Bandits

Abstract

We consider a stochastic multi-armed bandit setting where reward must be actively queried for it to be observed. We provide tight lower and upper problem-dependent guarantees on both the regret and the number of queries. Interestingly, we prove that there is a fundamental difference between problems with a unique and multiple optimal arms, unlike in the standard multi-armed bandit problem. We also present a new, simple, UCB-style sampling concept, and show that it naturally adapts to the number of optimal arms and achieves tight regret and querying bounds.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.