ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.05098
26
19

SurroundNet: Towards Effective Low-Light Image Enhancement

11 October 2021
Fei Zhou
Xin Sun
Junyu Dong
Haoran Zhao
Xiao Xiang Zhu
ArXivPDFHTML
Abstract

Although Convolution Neural Networks (CNNs) has made substantial progress in the low-light image enhancement task, one critical problem of CNNs is the paradox of model complexity and performance. This paper presents a novel SurroundNet which only involves less than 150KKK parameters (about 80-98 percent size reduction compared to SOTAs) and achieves very competitive performance. The proposed network comprises several Adaptive Retinex Blocks (ARBlock), which can be viewed as a novel extension of Single Scale Retinex in feature space. The core of our ARBlock is an efficient illumination estimation function called Adaptive Surround Function (ASF). It can be regarded as a general form of surround functions and be implemented by convolution layers. In addition, we also introduce a Low-Exposure Denoiser (LED) to smooth the low-light image before the enhancement. We evaluate the proposed method on the real-world low-light dataset. Experimental results demonstrate that the superiority of our submitted SurroundNet in both performance and network parameters against State-of-the-Art low-light image enhancement methods. Code is available at https: github.com/ouc-ocean-group/SurroundNet.

View on arXiv
Comments on this paper