ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.04517
30
6

Extending Multi-Text Sentence Fusion Resources via Pyramid Annotations

9 October 2021
Daniela Brook Weiss
Paul Roit
Ori Ernst
Ido Dagan
ArXivPDFHTML
Abstract

NLP models that compare or consolidate information across multiple documents often struggle when challenged with recognizing substantial information redundancies across the texts. For example, in multi-document summarization it is crucial to identify salient information across texts and then generate a non-redundant summary, while facing repeated and usually differently-phrased salient content. To facilitate researching such challenges, the sentence-level task of \textit{sentence fusion} was proposed, yet previous datasets for this task were very limited in their size and scope. In this paper, we revisit and substantially extend previous dataset creation efforts. With careful modifications, relabeling and employing complementing data sources, we were able to triple the size of a notable earlier dataset. Moreover, we show that our extended version uses more representative texts for multi-document tasks and provides a larger and more diverse training set, which substantially improves model training.

View on arXiv
Comments on this paper