ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.04487
6
3

Colour augmentation for improved semi-supervised semantic segmentation

9 October 2021
Geoff French
Michal Mackiewicz
ArXivPDFHTML
Abstract

Consistency regularization describes a class of approaches that have yielded state-of-the-art results for semi-supervised classification. While semi-supervised semantic segmentation proved to be more challenging, a number of successful approaches have been recently proposed. Recent work explored the challenges involved in using consistency regularization for segmentation problems. In their self-supervised work Chen et al. found that colour augmentation prevents a classification network from using image colour statistics as a short-cut for self-supervised learning via instance discrimination. Drawing inspiration from this we find that a similar problem impedes semi-supervised semantic segmentation and offer colour augmentation as a solution, improving semi-supervised semantic segmentation performance on challenging photographic imagery.

View on arXiv
Comments on this paper