ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.04044
36
1

Subspace Change-Point Detection via Low-Rank Matrix Factorisation

8 October 2021
Euan T. McGonigle
Hankui Peng
ArXivPDFHTML
Abstract

Multivariate time series can often have a large number of dimensions, whether it is due to the vast amount of collected features or due to how the data sources are processed. Frequently, the main structure of the high-dimensional time series can be well represented by a lower dimensional subspace. As vast quantities of data are being collected over long periods of time, it is reasonable to assume that the underlying subspace structure would change over time. In this work, we propose a change-point detection method based on low-rank matrix factorisation that can detect multiple changes in the underlying subspace of a multivariate time series. Experimental results on both synthetic and real data sets demonstrate the effectiveness of our approach and its advantages against various state-of-the-art methods.

View on arXiv
Comments on this paper