ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03326
31
3

Back from the future: bidirectional CTC decoding using future information in speech recognition

7 October 2021
Namkyu Jung
Geon-min Kim
Han-Gyu Kim
ArXivPDFHTML
Abstract

In this paper, we propose a simple but effective method to decode the output of Connectionist Temporal Classifier (CTC) model using a bi-directional neural language model. The bidirectional language model uses the future as well as the past information in order to predict the next output in the sequence. The proposed method based on bi-directional beam search takes advantage of the CTC greedy decoding output to represent the noisy future information. Experiments on the Librispeechdataset demonstrate the superiority of our proposed method compared to baselines using unidirectional decoding. In particular, the boost inaccuracy is most apparent at the start of a sequence which is the most erroneous part for existing systems based on unidirectional decoding.

View on arXiv
Comments on this paper