ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.01408
17
0

Paradigm Shift Through the Integration of Physical Methodology and Data Science

30 September 2021
T. Miyamoto
    AI4CE
ArXivPDFHTML
Abstract

Data science methodologies, which have undergone significant developments recently, provide flexible representational performance and fast computational means to address the challenges faced by traditional scientific methodologies while revealing unprecedented challenges such as the interpretability of computations and the demand for extrapolative predictions on the amount of data. Methods that integrate traditional physical and data science methodologies are new methods of mathematical analysis that complement both methodologies and are being studied in various scientific fields. This paper highlights the significance and importance of such integrated methods from the viewpoint of scientific theory. Additionally, a comprehensive survey of specific methods and applications are conducted, and the current state of the art in relevant research fields are summarized.

View on arXiv
Comments on this paper