ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.01258
19
0

A Aelf-supervised Tibetan-chinese Vocabulary Alignment Method Based On Adversarial Learning

4 October 2021
Enshuai Hou
Jie Zhu
ArXiv (abs)PDFHTML
Abstract

Tibetan is a low-resource language. In order to alleviate the shortage of parallel corpus between Tibetan and Chinese, this paper uses two monolingual corpora and a small number of seed dictionaries to learn the semi-supervised method with seed dictionaries and self-supervised adversarial training method through the similarity calculation of word clusters in different embedded spaces and puts forward an improved self-supervised adversarial learning method of Tibetan and Chinese monolingual data alignment only. The experimental results are as follows. First, the experimental results of Tibetan syllables Chinese characters are not good, which reflects the weak semantic correlation between Tibetan syllables and Chinese characters; second, the seed dictionary of semi-supervised method made before 10 predicted word accuracy of 66.5 (Tibetan - Chinese) and 74.8 (Chinese - Tibetan) results, to improve the self-supervision methods in both language directions have reached 53.5 accuracy.

View on arXiv
Comments on this paper