ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.01101
16
7

Parallel Actors and Learners: A Framework for Generating Scalable RL Implementations

3 October 2021
Chi Zhang
S. Kuppannagari
Viktor Prasanna
    OffRL
ArXivPDFHTML
Abstract

Reinforcement Learning (RL) has achieved significant success in application domains such as robotics, games and health care. However, training RL agents is very time consuming. Current implementations exhibit poor performance due to challenges such as irregular memory accesses and thread-level synchronization overheads on CPU. In this work, we propose a framework for generating scalable reinforcement learning implementations on multi-core systems. Replay Buffer is a key component of RL algorithms which facilitates storage of samples obtained from environmental interactions and data sampling for the learning process. We define a new data structure for Prioritized Replay Buffer based on KKK-ary sum tree that supports asynchronous parallel insertions, sampling, and priority updates. To address the challenge of irregular memory accesses, we propose a novel data layout to store the nodes of the sum tree that reduces the number of cache misses. Additionally, we propose lazy writing\textit{lazy writing}lazy writing mechanism to reduce thread-level synchronization overheads of the Replay Buffer operations. Our framework employs parallel actors to concurrently collect data via environmental interactions, and parallel learners to perform stochastic gradient descent using the collected data. Our framework supports a wide range of reinforcement learning algorithms including DQN, DDPG, etc. We demonstrate the effectiveness of our framework in accelerating RL algorithms by performing experiments on CPU + GPU platform using OpenAI benchmarks.

View on arXiv
Comments on this paper