ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.00479
39
11

Learning to Ask for Data-Efficient Event Argument Extraction

1 October 2021
Hongbin Ye
Ningyu Zhang
Zhen Bi
Shumin Deng
Chuanqi Tan
Hui Chen
Fei Huang
Huajun Chen
    RALM
ArXivPDFHTML
Abstract

Event argument extraction (EAE) is an important task for information extraction to discover specific argument roles. In this study, we cast EAE as a question-based cloze task and empirically analyze fixed discrete token template performance. As generating human-annotated question templates is often time-consuming and labor-intensive, we further propose a novel approach called "Learning to Ask," which can learn optimized question templates for EAE without human annotations. Experiments using the ACE-2005 dataset demonstrate that our method based on optimized questions achieves state-of-the-art performance in both the few-shot and supervised settings.

View on arXiv
Comments on this paper