ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.15196
19
18

Multilingual AMR Parsing with Noisy Knowledge Distillation

30 September 2021
Deng Cai
Xin Li
Jackie Chun-Sing Ho
Lidong Bing
W. Lam
ArXivPDFHTML
Abstract

We study multilingual AMR parsing from the perspective of knowledge distillation, where the aim is to learn and improve a multilingual AMR parser by using an existing English parser as its teacher. We constrain our exploration in a strict multilingual setting: there is but one model to parse all different languages including English. We identify that noisy input and precise output are the key to successful distillation. Together with extensive pre-training, we obtain an AMR parser whose performances surpass all previously published results on four different foreign languages, including German, Spanish, Italian, and Chinese, by large margins (up to 18.8 \textsc{Smatch} points on Chinese and on average 11.3 \textsc{Smatch} points). Our parser also achieves comparable performance on English to the latest state-of-the-art English-only parser.

View on arXiv
Comments on this paper