ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.14913
12
9

Two Sample Testing in High Dimension via Maximum Mean Discrepancy

30 September 2021
Hanjia Gao
Xiaofeng Shao
ArXivPDFHTML
Abstract

Maximum Mean Discrepancy (MMD) has been widely used in the areas of machine learning and statistics to quantify the distance between two distributions in the ppp-dimensional Euclidean space. The asymptotic property of the sample MMD has been well studied when the dimension ppp is fixed using the theory of U-statistic. As motivated by the frequent use of MMD test for data of moderate/high dimension, we propose to investigate the behavior of the sample MMD in a high-dimensional environment and develop a new studentized test statistic. Specifically, we obtain the central limit theorems for the studentized sample MMD as both the dimension ppp and sample sizes n,mn,mn,m diverge to infinity. Our results hold for a wide range of kernels, including popular Gaussian and Laplacian kernels, and also cover energy distance as a special case. We also derive the explicit rate of convergence under mild assumptions and our results suggest that the accuracy of normal approximation can improve with dimensionality. Additionally, we provide a general theory on the power analysis under the alternative hypothesis and show that our proposed test can detect difference between two distributions in the moderately high dimensional regime. Numerical simulations demonstrate the effectiveness of our proposed test statistic and normal approximation.

View on arXiv
Comments on this paper