ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.14657
24
4

Understanding Egocentric Hand-Object Interactions from Hand Pose Estimation

29 September 2021
Yao Lu
Walterio W. Mayol-Cuevas
    EgoV
ArXivPDFHTML
Abstract

In this paper, we address the problem of estimating the hand pose from the egocentric view when the hand is interacting with objects. Specifically, we propose a method to label a dataset Ego-Siam which contains the egocentric images pair-wisely. We also use the collected pairwise data to train our encoder-decoder style network which has been proven efficient in. This could bring extra training efficiency and testing accuracy. Our network is lightweight and can be performed with over 30 FPS with an outdated GPU. We demonstrate that our method outperforms Mueller et al. which is the state of the art work dealing with egocentric hand-object interaction problems on the GANerated dataset. To show the ability to preserve the semantic information of our method, we also report the performance of grasp type classification on GUN-71 dataset and outperforms the benchmark by only using the predicted 3-d hand pose.

View on arXiv
Comments on this paper