ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.14116
10
1

Comparison of atlas-based and neural-network-based semantic segmentation for DENSE MRI images

29 September 2021
Elle R. Buser
E. Hart
Ben Huenemann
ArXiv (abs)PDFHTML
Abstract

Two segmentation methods, one atlas-based and one neural-network-based, were compared to see how well they can each automatically segment the brain stem and cerebellum in Displacement Encoding with Stimulated Echoes Magnetic Resonance Imaging (DENSE-MRI) data. The segmentation is a pre-requisite for estimating the average displacements in these regions, which have recently been proposed as biomarkers in the diagnosis of Chiari Malformation type I (CMI). In numerical experiments, the segmentations of both methods were similar to manual segmentations provided by trained experts. It was found that, overall, the neural-network-based method alone produced more accurate segmentations than the atlas-based method did alone, but that a combination of the two methods -- in which the atlas-based method is used for the segmentation of the brain stem and the neural-network is used for the segmentation of the cerebellum -- may be the most successful.

View on arXiv
Comments on this paper