ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.13066
30
4

Prefix-to-SQL: Text-to-SQL Generation from Incomplete User Questions

15 September 2021
Naihao Deng
Shuaichen Chang
Peng Shi
Tao Yu
Rui Zhang
    LMTD
ArXivPDFHTML
Abstract

Existing text-to-SQL research only considers complete questions as the input, but lay-users might strive to formulate a complete question. To build a smarter natural language interface to database systems (NLIDB) that also processes incomplete questions, we propose a new task, prefix-to-SQL which takes question prefix from users as the input and predicts the intended SQL. We construct a new benchmark called PAGSAS that contains 124K user question prefixes and the intended SQL for 5 sub-tasks Advising, GeoQuery, Scholar, ATIS, and Spider. Additionally, we propose a new metric SAVE to measure how much effort can be saved by users. Experimental results show that PAGSAS is challenging even for strong baseline models such as T5. As we observe the difficulty of prefix-to-SQL is related to the number of omitted tokens, we incorporate curriculum learning of feeding examples with an increasing number of omitted tokens. This improves scores on various sub-tasks by as much as 9% recall scores on sub-task GeoQuery in PAGSAS.

View on arXiv
Comments on this paper